

Supporting Information for Complexation-Initiated Intramolecular Diels-Alder Reaction

Nobuharu IWASAWA,* Fumiko SAKURADA, and Mari IWAMOTO

General. All operations were performed under an argon atmosphere. ^1H NMR (500 MHz) and ^{13}C NMR (125 MHz) spectra were recorded on a Bruker AM500 and a Bruker DRX500 spectrometers in CDCl_3 solutions using CHCl_3 (^1H , δ 7.24) and CDCl_3 (^{13}C , δ 77.0) as internal standards. IR spectra were recorded on a Horiba FT 300-S spectrophotometer. High-resolution mass spectra were obtained with a JMS-SX102A mass spectrometer at ionization energy of 70eV. Silica-gel column chromatography was carried out with Merck Kieselgel 60 Art.7734. Preparative TLC was performed on a silica-gel (Wakogel B-5F).

(1) Preparation of 1a.

and the combined organic phase was filtered through Celite. The solvent was removed under reduced pressure and the residue was purified by silica-gel column chromatography (hexane) to give **8** (2.23 g, 62% for 2 steps).

IR (neat): 2918, 1506, 1011, 733, cm^{-1} .

$^1\text{H-NMR}(\text{CDCl}_3)$: 2.42 (2H, q, $J = 7.3$ Hz), 2.74 (2H, t, $J = 7.3$ Hz), 6.01 (1H, d, $J = 3.0$ Hz), 6.28 (1H, d, $J = 1.7$ Hz), 6.40 (1H, t, $J = 7.1$ Hz), 7.30 (1H, s).

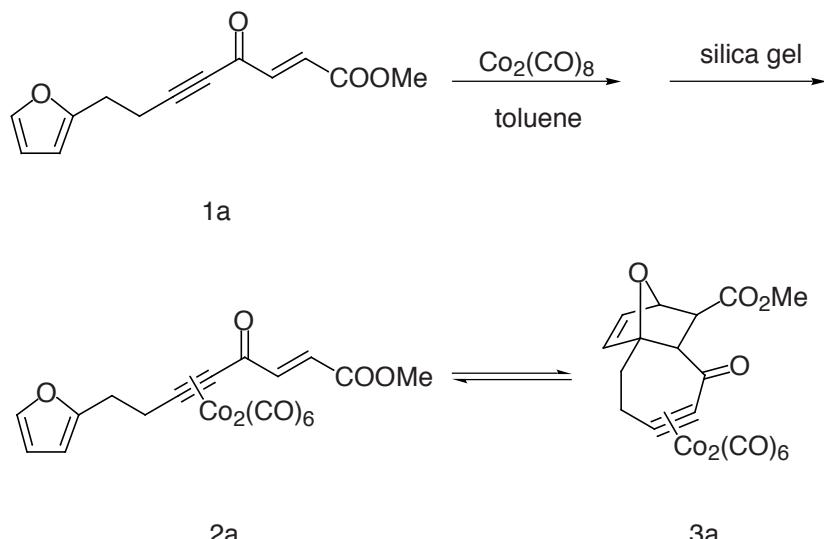
$^{13}\text{C-NMR}(\text{CDCl}_3)$: 26.2, 31.6, 89.8, 105.6, 110.3, 137.3, 141.3, 154.2.

HRMS Found: m/z 277.8930

Calcd for $\text{C}_8\text{H}_8\text{O}^{79}\text{Br}_2$: 277.8941

Methyl 8-(2-furyl)-4-oxo-oct-2-en-5-ynoate (**1a**)

To a Et_2O solution (2 mL) of **8** (280 mg, 1.0 mmol) was added 1.39 mL of 1.5 M n-BuLi (2.1 mmol) dropwise at -78°C . To this solution was added $\text{Me}_2\text{S}\bullet\text{CuBr}$ (174 mg, 0.8 mmol), 0.8 mL of Me_2S , and a Et_2O solution (2 mL) of 3-methoxycarbonylpropenyl chloride (156 mg, 1.1 mmol), in this order at 0°C . After the mixture was stirred for 1 hour at this temperature, the reaction was quenched with pH7 phosphate buffer. The organic materials were extracted with ethyl acetate three times, and the combined extracts were dried over anhydrous Na_2SO_4 . The solvent was removed under reduced pressure and the residue was purified by preparative TLC (hexane: ethyl acetate = 4:1) to give **1a** (91.4 mg, 39%).


IR (neat): 2214, 1722, 1647, 1628, 1257 cm^{-1} .

$^1\text{H-NMR}(\text{CDCl}_3)$: 2.76 (2H, t, $J = 7.2$ Hz), 2.94 (2H, t, $J = 7.2$ Hz), 3.82 (3H, s), 6.11 (1H, d, $J = 3.4$ Hz), 6.29 (1H, s), 6.85 (1H, d, $J = 15.8$ Hz), 6.97 (1H, d, $J = 15.8$ Hz), 7.33 (1H, d, $J = 1.6$ Hz). $^{13}\text{C-NMR}(\text{CDCl}_3)$: 18.5, 26.4, 52.4, 79.5, 95.1, 106.3, 110.3, 135.0, 141.1, 141.7, 152.8, 165.5, 177.0.

HRMS Found: m/z 232.0707

Calcd for $\text{C}_{13}\text{H}_{12}\text{O}_4$: 232.0736.

(2) Complexation Initiated Intramolecular Diels-Alder Reaction of **1a**.

A toluene solution (5 mL) of **1a** (24.8 mg, 0.11 mmol) was added to $\text{Co}_2(\text{CO})_8$ (52.6 mg, 0.15 mmol) at rt. The mixture was stirred for 1h, and was adsorbed on silica-gel. After elution of excess $\text{Co}_2(\text{CO})_8$ with pentane, it was left on silica-gel for 1h at rt. The complex was rapidly eluted with pentane-diethyl ether (= 4: 1) to give a mixture of **2a** and **3a** in a ratio of 3 : 1. **2a** and **3a** were separated by column chromatography without equilibrium by carrying out the chromatography at 0°C.

Hexacarbonyl- μ -[5-6- η -{methyl 8-(2-furyl)-4-oxo-oct-2-en-5-ynoate}] dicobalt($\text{Co}-\text{Co}$), (2a)

IR (neat): 2100, 2062, 2027, 1732, 1304 cm^{-1} .

$^1\text{H-NMR}(\text{CDCl}_3)$: 2.99 (1H, t, J = 8.3 Hz), 3.30 (2H, t, J = 8.3 Hz), 3.80 (3H, s), 6.06(1H, s), 6.26 (1H, s), 6.75 (1H, d, J = 16.7 Hz), 7.08 (1H, d, J = 16.7 Hz), 7.28 (1H, s) .

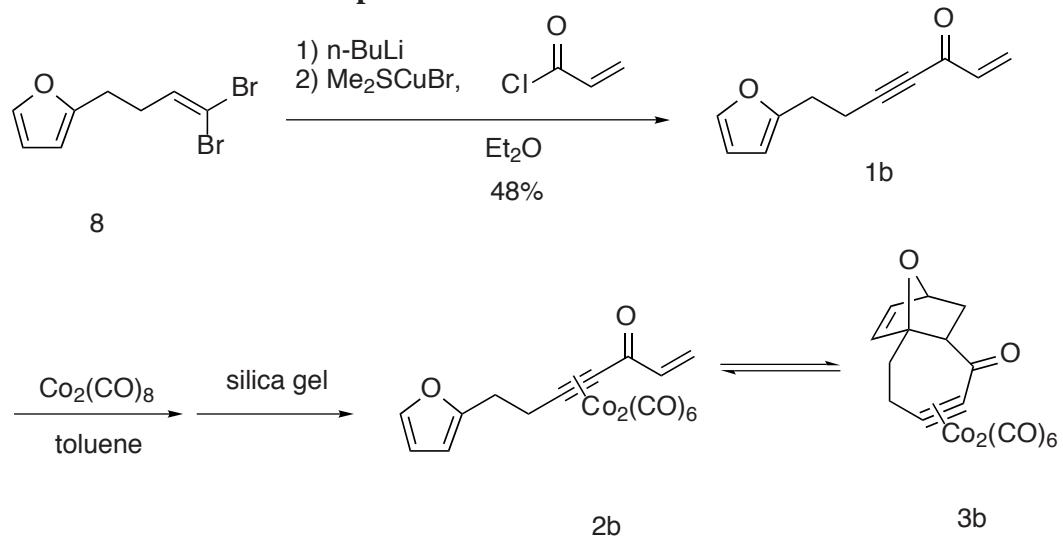
$^{13}\text{C-NMR}(\text{CDCl}_3)$: 29.5, 32.6, 52.2, 87.5, 98.5, 106.5, 110.4, 129.6, 138.5, 141.4, 153.1, 165.7, 190.9, 198.0.

HRMS Found: m/z 489.9146

Calcd for $\text{C}_{18}\text{H}_{12}\text{O}_9\text{Co}_2$: 489.9145 .

Hexacarbonyl- μ -[3-4- η -{(1R*, 7R*, 10S*, 11R*)-7,10-epoxy-11-methoxycarbonylbicyclo[5. 4. 0]undec-8-en-3-yn-2-one}] dicobalt($\text{Co}-\text{Co}$), (3a)

IR (neat): 2102, 2062, 2034, 1735, 1680 cm^{-1} .


$^1\text{H-NMR}(\text{CDCl}_3)$: 2.48 (1H, dt, J = 4.1, 13.8 Hz), 2.54 (1H, ddd, J = 2.8, 5.0, 13.8 Hz), 3.22 (1H, ddd, J = 5.0, 13.8, 17.5 Hz), 3.27 (1H, d, J = 3.4 Hz), 3.56 (1H, ddd, J = 2.8, 4.1, 17.5 Hz), 3.66 (1H, d, J = 3.4 Hz), 3.73 (3H, s), 5.23 (1H, s), 6.16 (1H, d, J = 6.7 Hz), 6.58 (1H, d, J = 6.7 Hz) .

$^{13}\text{C-NMR}(\text{CDCl}_3)$: 30.7, 32.5, 46.8, 52.8, 60.7, 80.9, 81.6, 89.4, 95.9, 132.7, 138.5, 172.9, 197.6, 198.1.

HRMS Found: m/z 489.9112

Calcd for $\text{C}_{18}\text{H}_{12}\text{O}_9\text{Co}_2$: 489.9145($\text{M}^+ - \text{CO}$) .

(3) Preparation of **1b and Its Complexation Initiated Intramolecular Diels-Alder Reaction.**

7-(2-Furyl)hept-1-en-4-yn-3-one (1b)

1b was prepared from **8** by employing acryloyl chloride instead of 3-methoxycarbonylpropenyl chloride in 48% yield.

IR (neat): 2220, 1647, 1402, 1261 cm^{-1} .

$^1\text{H-NMR}(\text{CDCl}_3)$: 2.74 (2H, t, $J = 7.3$ Hz), 2.94 (2H, t, $J = 7.3$ Hz), 6.09 (1H, d, $J = 3.0$ Hz), 6.12 (1H, dd, $J = 1.0, 10.0$ Hz), 6.29 (1H, dd, $J = 2.0, 3.0$ Hz), 6.33 (1H, dd, $J = 10.0, 17.4$ Hz), 6.44 (1H, dd, $J = 1.0, 17.4$ Hz), 7.31 (1H, d, $J = 2.0$ Hz).

$^{13}\text{C-NMR}(\text{CDCl}_3)$: 18.3, 26.5, 79.0, 93.6, 106.1, 110.3, 133.6, 137.9, 141.5, 153.1, 178.9.

HRMS Found: m/z 174.0670

Calcd for $\text{C}_{11}\text{H}_{10}\text{O}_2$: 174.0681.

Complexation Initiated Intramolecular Diels-Alder Reaction of 1b.

1b was treated in the same procedure as **1a** to give a mixture of **2b** and **3b** in a ratio of 1: 10 (determined by $^1\text{H-NMR}$ analysis) in 91% yield.

Hexacarbonyl- μ -[4-5- η -{7-(2-furyl) hept-1-en-4-yn-3-one}] dicobalt (Co -Co), (2b)

IR (neat): 2098, 2060, 2026, 1655, 1396 cm^{-1} .

$^1\text{H-NMR}(\text{CDCl}_3)$: 2.99 (2H, t, $J = 8.1$ Hz), 3.26 (2H, t, $J = 8.0$ Hz), 5.73 (1H, dd, $J = 1.3, 10.2$ Hz), 6.07 (1H, d, $J = 2.9$ Hz), 6.28 (1H, t, $J = 3.0$ Hz), 6.36 (1H, dd, $J = 1.3, 17.1$ Hz), 6.52 (1H, dd, $J = 10.2, 17.1$ Hz), 7.30 (1H, d, $J = 1.1$ Hz).

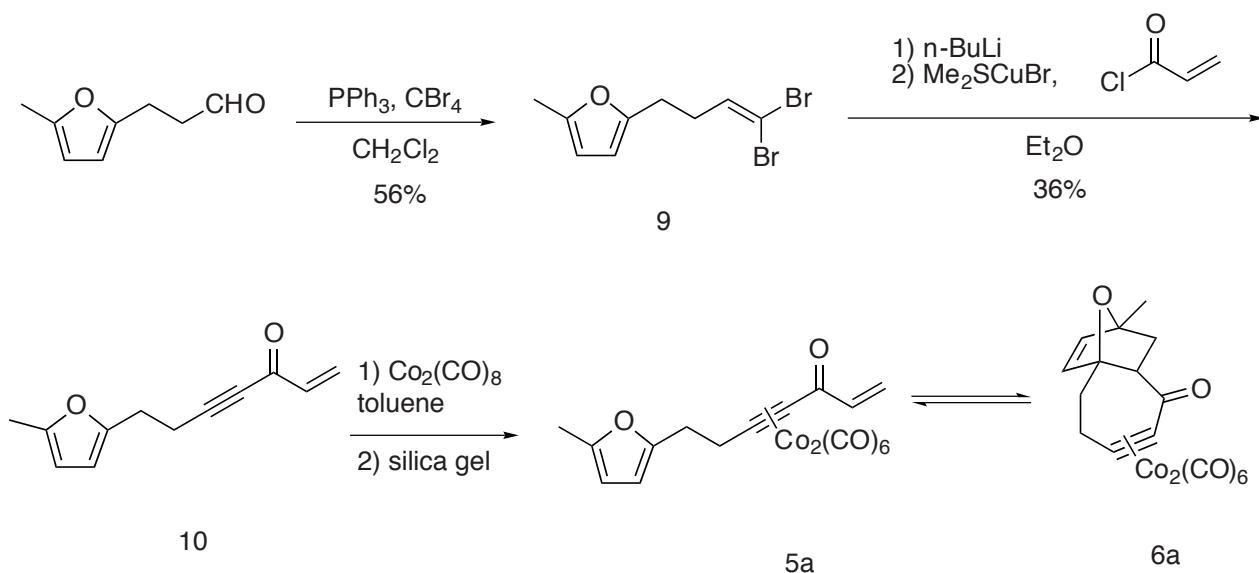
$^{13}\text{C-NMR}(\text{CDCl}_3)$: 29.6, 32.5, 87.8, 98.3, 106.1, 110.4, 127.9, 134.7, 141.3, 153.5, 191.8, 198.3.

HRMS Found: m/z 459.9033

Calcd for $\text{C}_{17}\text{H}_{10}\text{O}_8\text{Co}_2$: 459.9040.

Hexacarbonyl- μ -[3-4- η -{(1R^* , 7R^* , 10R^*)-7,10-epoxybicyclo[5.4.0]undec-8-en-3-yn-2-one}] dicobalt (Co -Co), (3b)

IR (neat): 2100, 2048, 2027, 1676, 1560 cm^{-1} .


$^1\text{H-NMR}(\text{CDCl}_3)$: 2.03 (1H, dd, $J = 3.5, 11.6$ Hz), 2.13 (1H, ddd, $J = 4.9, 8.3, 11.6$ Hz), 2.42 (1H, dt, $J = 4.0, 13.3$ Hz), 2.52 (1H, ddd, $J = 2.7, 4.9, 13.8$ Hz), 3.18 (1H, dd, $J = 3.5, 8.4$ Hz), 3.24 (1H, ddd, $J = 4.9, 13.2, 17.7$ Hz), 3.55 (1H, ddd, $J = 2.7, 4.3, 17.4$ Hz), 5.00 (1H, dd, $J = 1.6, 4.8$ Hz), 6.02 (1H, d, $J = 5.8$ Hz), 6.50 (1H, d, $J = 5.8$ Hz).

$^{13}\text{C-NMR}(\text{CDCl}_3)$: 28.3, 31.0, 33.0, 56.9, 78.7, 82.9, 88.8, 96.3, 130.3, 139.1, 198.0, 198.4.

HRMS Found: m/z 459.9041

Calcd for $\text{C}_{17}\text{H}_{10}\text{O}_8\text{Co}_2$: 459.9040.

(4) Preparation of 10 and Its Complexation Initiated Intramolecular Diels-Alder Reaction.

1,1-Dibromo-4-[2-(5-methyl)furyl]-1-butene (9)

9 was prepared from 3-[2-(5-methyl)furyl]-1-propanal by the same procedure as **8** in 56% yield.

IR (neat): 2920, 1570, 1219, 1022, 783 cm^{-1} .

$^1\text{H-NMR}(\text{CDCl}_3)$: 2.25 (3H, s), 2.42 (2H, t, $J = 7.1$ Hz), 2.68 (2H, t, $J = 6.9$ Hz), 5.84 (1H, s), 5.88 (1H, s), 6.41 (1H, t, $J = 6.8$ Hz).

$^{13}\text{C-NMR}(\text{CDCl}_3)$: 26.8, 39.5, 39.8, 86.1, 107.7, 110.2, 141.4, 145.5, 152.9.

HRMS Found: m/z 291.9114

Calcd for $\text{C}_9\text{H}_{10}\text{OBr}_2$: 291.9098

7-[2-(5-Methyl)furyl]- hept-1-en-4-yn-3-one (10)

10 was prepared from **9** by the same procedure as **1a** in 36% yield.

IR (neat): 2224, 1647, 1400, 1263 cm^{-1} .

$^1\text{H-NMR}(\text{CDCl}_3)$: 2.24 (3H, s), 2.71 (2H, t, $J = 7.5$ Hz), 2.87 (2H, t, $J = 7.5$ Hz), 5.84 (1H, d, $J = 1.5$ Hz), 5.95 (1H, d, $J = 3.0$ Hz), 6.10 (1H, dd, $J = 1.0, 10.5$ Hz), 6.34 (1H, dd, $J = 10.0, 17.5$ Hz), 6.46 (1H, dd, $J = 1.0, 17.5$ Hz).

$^{13}\text{C-NMR}(\text{CDCl}_3)$: 13.5, 18.6, 26.7, 79.0, 93.9, 106.1, 106.8, 133.5, 138.1, 151.1, 151.3, 178.9.

HRMS Found: m/z 188.0835

Calcd for $\text{C}_{12}\text{H}_{12}\text{O}_2$: 188.0837.

Complexation Initiated Intramolecular Diels-Alder Reaction of 10.

10 was treated in the same procedure as **1a** to give a mixture of **5a** and **6a** in a ratio of 1: 34 (determined by $^1\text{H-NMR}$ analysis) in quantitative yield.

Hexacarbonyl- μ -[4-5- η -{7-[2-(5-methyl)furyl] hept-1-en-4-yn-3-one}] dicobalt(Co -Co), (5a)

IR (neat): 2096, 2031, 2013, 1658, 1396 cm^{-1} .

$^1\text{H-NMR}(\text{CDCl}_3)$: 2.24 (3H, s), 2.94 (2H, t, $J = 7.5$ Hz), 3.24 (2H, t, $J = 7.5$ Hz), 5.72 (1H, dd, $J = 1.2, 10.2$ Hz), 5.84 (1H, s), 5.92 (1H, s), 6.36 (1H, d, $J = 17.1$ Hz), 6.51 (1H, dd, $J = 10.2, 17.1$ Hz).

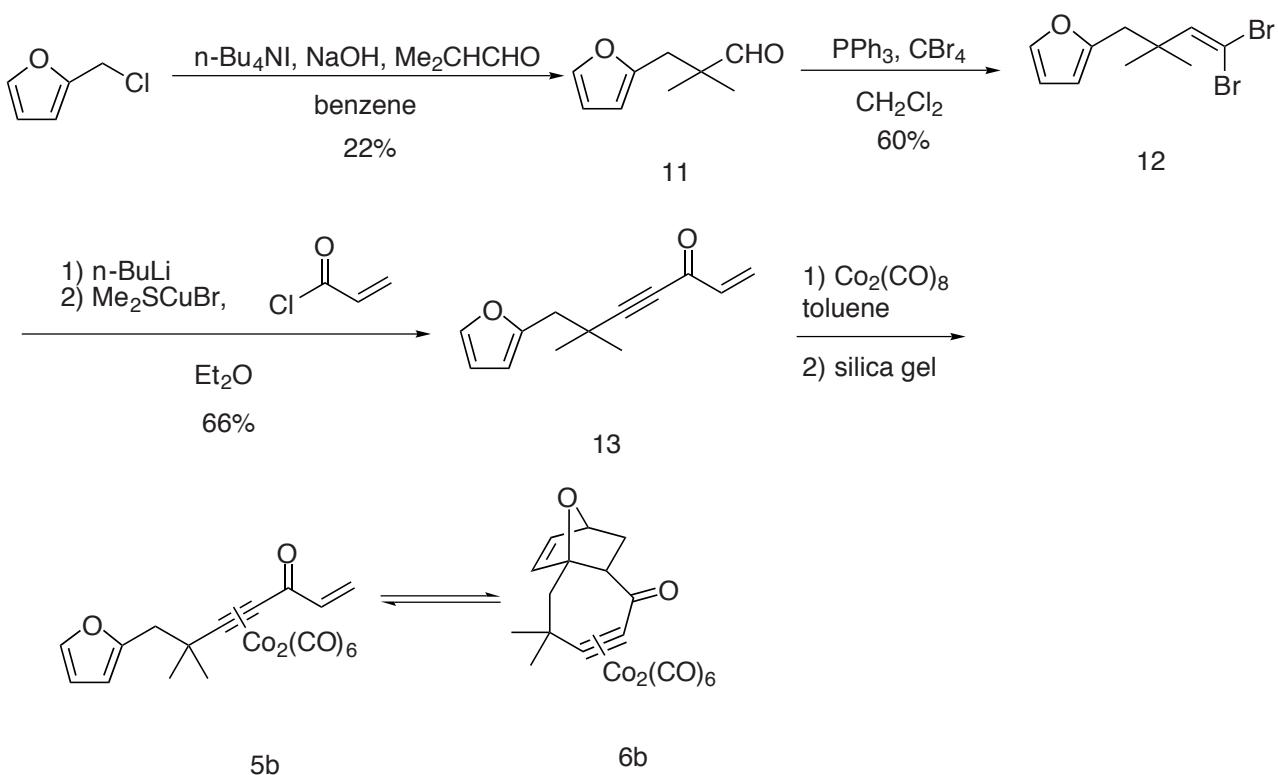
$^{13}\text{C-NMR}(\text{CDCl}_3)$: 13.4, 29.7, 32.7, 88.0, 98.5, 106.1, 106.8, 127.8, 134.8, 150.9, 151.6, 191.8, 198.4.

HRMS Found: m/z 445.9279

Calcd for C₁₇H₁₂O₇Co₂: 445.9247 (M⁺-CO).

Hexacarbonyl- μ -[3-4- η -{(1R*, 7R*, 10R*)-7,10-epoxy-10-methylbicyclo[5.4.0]undec-8-en-3-yn-2-one}] dicobalt (Co -Co),(6a)

IR (neat): 2102, 2067, 2025, 1678, 1674 cm⁻¹.


¹H-NMR(CDCl₃): 1.62 (3H, s), 1.85 (1H, dd, *J* = 8.4, 11.7 Hz), 2.16 (1H, dd, *J* = 3.3, 11.6 Hz), 2.40 (1H, dt, *J* = 4.1, 13.3 Hz), 2.49 (1H, ddd, *J* = 2.8, 4.9, 13.3 Hz), 3.23 (1H, ddd, *J* = 4.9, 13.1, 17.7 Hz), 3.33 (1H, dd, *J* = 3.3, 8.3 Hz), 3.53 (1H, ddd, *J* = 3.0, 3.9, 17.5 Hz), 6.02 (1H, d, *J* = 5.8 Hz), 6.33 (1H, d, *J* = 5.8 Hz).

¹³C-NMR(CDCl₃): 18.7, 30.8, 33.2, 34.6, 60.1, 86.5, 88.8, 97.0, 107.8, 130.9, 142.0, 198.3, 198.5.

HRMS Found: m/z 473.9214

Calcd for C₁₈H₁₂O₈Co₂: 473.9196 .

(5) Preparation of 13 and Its Complexation Initiated Intramolecular Diels-Alder Reaction.

3-(2-Furyl)-2,2-dimethyl-1-propanal (11)

A benzene solution (6.8 mL) of tetra-*n*-butylammonium iodide (266 mg, 0.7 mmol) was added to powdered sodium hydroxide (2.88 g, 72.0 mmol) at rt. After 35 minutes, a mixture of isobutyraldehyde (5.19 g, 72.1 mmol) and 1-furfuryl chloride (10.44 g, 90.0 mmol) was added dropwise and the mixture was stirred overnight. The solvent was removed under reduced pressure and the organic materials were extracted with Et₂O twice. The combined extracts were dried over Na₂SO₄ and the solvent was removed under reduced pressure. The residue was purified by distillation (24 mm, 80 -90 °C) to give **11** (2.94 g, 22%).

1,1-Dibromo-4-(2-furyl)-3,3-dimethyl-1-butene (12)

12 was prepared from **11** by the same procedure as **8** in 60% yield.

IR (neat): 2964, 1504, 1011, 729 cm⁻¹.

¹H-NMR(CDCl₃): 1.21 (6H, s), 2.80 (2H, s), 6.05 (1H, d, *J* = 2.4 Hz), 6.29 (1H, d, *J* = 2.4 Hz), 6.59 (1H, s), 7.31 (1H, s).

¹³C-NMR(CDCl₃): 13.5, 26.2, 31.7, 89.5, 105.9, 106.2, 137.4, 150.8, 152.3.

HRMS Found: m/z 305.9221

Calcd for C₁₀H₁₂O⁷⁹Br₂: 305.9254.

7-(2-Furyl)-6,6-dimethyl-hept-1-en-4-yn-3-one(13)

13 was prepared from **12** by the same procedure as **1a** in 66% yield.

IR (neat): 2214, 1651, 1610, 1400, 1255 cm⁻¹.

¹H-NMR(CDCl₃): 1.31 (6H, s), 2.83 (2H, s), 6.10 (1H, dd, *J* = 0.8, 10.3 Hz), 6.14 (1H, d, *J* = 3.2 Hz), 6.30 (1H, dd, *J* = 2.4, 3.4 Hz), 6.33 (1H, dd, *J* = 10.1, 17.4 Hz), 6.44 (1H, d, *J* = 17.4 Hz), 7.31 (1H, d, *J* = 1.8 Hz).

¹³C-NMR(CDCl₃): 28.1, 32.4, 40.6, 78.5, 100.8, 108.1, 110.3, 133.4, 138.1, 141.5, 152.0, 179.2.

HRMS Found: m/z 202.0983

Calcd for C₁₃H₁₄O₂: 202.0994.

Complexation Initiated Intramolecular Diels-Alder Reaction of 13.

13 was treated in the same procedure as **1a** to give a mixture of **5b** and **6b** in a ratio of 5: 6 (determined by ¹H-NMR analysis) in 76% yield.

Hexacarbonyl- μ -[4-5- η -{7-(2-furyl)-6,6-dimethylhept-1-en-4-yn-3-one}] dicobalt(*Co-Co*), (5b**)**

IR (neat): 2096, 2046, 1655, 1396 cm⁻¹.

¹H-NMR(CDCl₃): 1.29 (6H, s), 2.85 (1H, s), 5.70 (1H, d, *J* = 10.0 Hz), 6.08 (1H, d, *J* = 2.5 Hz), 6.29 (1H, s), 6.43 (1H, d, *J* = 17.0 Hz), 6.63 (1H, dd, *J* = 10.1, 17.0 Hz), 7.30(1H, s)

¹³C-NMR(CDCl₃): 30.2, 39.9, 42.6, 88.9, 108.6, 110.3, 112.6, 128.1, 134.3, 141.5, 152.4, 192.0, 198.8

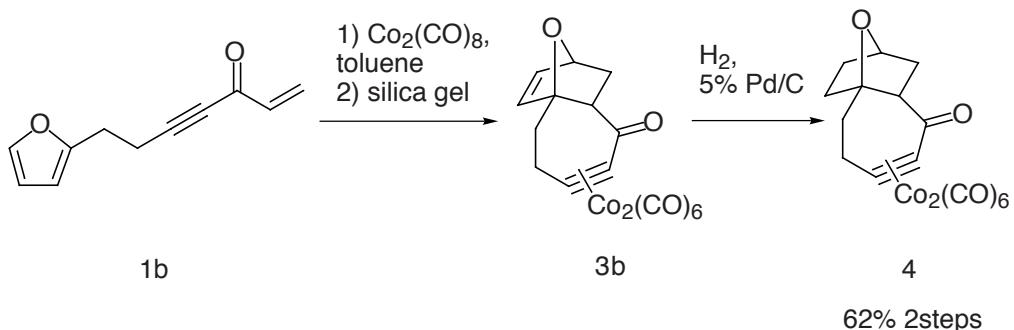
HRMS Found: m/z 487.9344

Calcd for C₁₉H₁₄O₈Co₂: 487.9353.

Hexacarbonyl- μ -[3-4- η -{(1R*, 7R*, 10R*)-7,10-epoxy-5,5-dimethylbicyclo[5.4.0]undec-8-en-3-yn-2-one}] dicobalt (*Co -Co*),(6b**)**

IR (neat): 2098, 2058, 2033, 1684, 1556 cm⁻¹.

¹H-NMR(CDCl₃) major isomer: 1.51 (6H, s), 1.96 (1H, dd, *J* = 3.7, 11.6 Hz), 2.08 (1H, ddd, *J* = 4.9, 7.8, 11.8 Hz), 2.38 (1H, d, *J* = 13.7 Hz), 2.50 (1H, d, *J* = 13.6 Hz), 3.14 (1H, dd, *J* = 3.6, 8.3 Hz), 4.92 (1H, dd, *J* = 1.5, 4.8 Hz), 6.19 (1H, d, *J* = 5.9 Hz), 6.53 (1H, d, *J* = 5.9 Hz).


Minor isomer: 1.50 (6H, s), 1.97 (1H, d, *J* = 13.7 Hz), 2.38 (1H, d, *J* = 13.7 Hz), 2.76-2.85 (3H, m), 4.97 (1H, d, *J* = 3.4 Hz), 6.27 (1H, d, *J* = 5.7 Hz), 6.48 (1H, d, *J* = 5.6 Hz).

¹³C-NMR(CDCl₃): 27.9, 28.3, 31.8, 34.0, 34.6, 36.4, 36.5, 36.7, 44.5, 46.9, 53.2, 56.2, 76.2, 80.0, 88.3, 90.2, 108.5, 112.8, 130.9, 138.0, 139.1, 139.4, 198.3, 198.8, 201.0 .

HRMS Found: m/z 459.9420

Calcd for C₁₈H₁₄O₇Co₂: 459.9404(M⁺-CO).

(6) Hydrogenation of 3b.

Hexacarbonyl- μ -[3-4- η -{(1R*, 7R*, 10R*)-7,10-epoxybicyclo[5.4.0]undec-3-yn-2-one}]dicobalt (Co -Co), (4)

A toluene solution (10 mL) of **1b** (68.6 mg, 0.39 mmol) was added to Co₂(CO)₈ (205 mg, 0.60 mmol) at rt. The mixture was stirred for 1 h, and was adsorbed on silica-gel. After elution of excess Co₂(CO)₈ with pentane, it was left on silica-gel for 2 h at rt. The complex was rapidly eluted with pentane-diethyl ether (= 1: 1) at 0°C to give a mixture of **2b** and **3b**. The solvent was removed under reduced pressure at 0°C. To an EtOAc solution (30 mL) of the product was added 5% Pd/C (53 mg) and the mixture was stirred under H₂ atmosphere at 0°C. After 10 h, the mixture was separated from Pd/C by filtration. The solvent was removed under reduced pressure and the residue was purified by preparative TLC (hexane: ethyl acetate = 4: 1) to give **4** (112.5 mg, 62%).

IR (neat): 2069, 2056, 2011, 1653, 1128 cm⁻¹.

¹H-NMR(CDCl₃): 1.44-1.50 (2H, m), 1.60-1.65 (1H, m), 1.80-1.88 (1H, m), 1.93-1.99 (1H, m), 2.29 (1H, dd, *J* = 4.7, 12.4 Hz), 2.33-2.44 (2H, m), 2.93 (1H, ddd, *J* = 5.5, 12.4, 17.6 Hz), 3.13 (1H, dd, *J* = 4.6, 11.1 Hz), 3.44 (1H, dt, *J* = 3.5, 17.2 Hz), 4.56 (1H, t, *J* = 5.4 Hz).

¹³C-NMR(CDCl₃): 30.1, 30.9, 31.1, 31.8, 35.6, 61.0, 77.3, 86.3, 97.6, 107.3, 198.2, 200.1

HRMS Found: m/z 461.9178

Calcd for C₁₇H₁₂O₈Co₂: 461.9196.